The Collins and Loftus model abandons the hierarchical structure used by Collins
and Quillian in favor of a structure based on a person’s experience. This means that
the spacing between various concepts can differ for various people depending on their
experience and knowledge about specific concepts.

In addition to proposing experientially based links between concepts, Collins and
Loftus also proposed a number of additional modifications to the Collins and Quillian
mode! to deal with problems like cognitive economy and the pig/mammal problem. The
details of their proposed modifications aren’t that important. What is important is that
these modifications made it possible to explain just about any result of categorization
experiments. Collins and Loftus describe their theory as “a fairly complicated theory
with enough generality to apply to results from many different experimental paradigms”
(1975, p. 427). Although you might think that being able to explain just about any result
would be an advantage, this property of the model led some researchers to criticize it, as
we will see in the next section.

Assessment of Semantic Network Theories

Why would a model be criticized if it can explain just about any result? We can answer
this question by considering the following properties of good psychological theories:

1. Explanatory power. The theory can explain why a particular result occurred by
making a statement like “Behavior A occurred because . . .”

2. Predictive power. The theory can predict the results of a particular experiment
by making a statement like “Under these circumstances, Behavior B will
occur.”

3. Falsifiability. The theory or part of the theory can potentially be shown to be
wrong when a particular experimental result occurs. This means that it should
be possible to design an experiment that can potentially yield results that would
be predicted by the theory, and also that can potentially yield results that are
not predicted by the theory.

4. Generation of experiments. Good theories usually stimulate a great deal of re-
search to test the theory, to determine ways of improving the theory, to use
new methods suggested by the theory, or study new questions raised by the
theory.

When we evaluate the original Collins and Quillian theory against these criteria, we
find that although it does explain and predict some results (see the data in Figure 8.15),
there are many results it can’t explain, such as the typicality effect and the longer reac-
tion times for sentences like “A pig is a mammal.” These failures to accurately explain
and predict are what led Collins and Loftus to propose their theory.

But Collins and Loftus’s theory has been criticized for being so flexible that it is
difficult to falsify. We can understand why this is a problem by considering the net-
works in Figure 8.21, which show the node for fire engine and some of its links for two
different people. The fire engine node would be more easily activated by related concepts
for the network in (b) than in (2) because the links are shorter in (b). But the lengths
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(a} Randy’s links to fire engine (b) Sandra’s links to fire engine

B Figure 8.21 The node for fire engine and some of the concepts to which it is linked for two different
people: (a) longer links, and (b) shorter links.

of the links can be determined by a number of factors, including a person’s past experi-
ence with fire engines or other types of vehicles. Unfortunately, there are no definite
rules for determining these lengths—or, for that matter, for determining things like
how long activation remains after it spreads, or how much total activation is needed to
trigger a node. This means that by appropriately adjusting things like the length of the
links and how long activation lasts, the model can “explain” many different results.

But if a theory can explain almost any result by adjusting various properties of the
model, what has it really explained? That question is what led P. N. Johnson-Laird and
coworkers (1984) to criticize semantic network theories and to conclude that these theo-
ries are “too powerful to be refuted by empirical evidence.” This is a way of saying that
it is difficult to falsify the theories. (See Anderson & Bower, 1973; Glass & Holyoak,
1975, for additional semantic network theories.)

Although research on semantic network theories was declining by the 1980s, net-
work theories began a resurgence with the publication of two volumes titled Parallel
Distributed Processing: Explorations in the Microstructure of Cognition by James McClel-
land and David Rumelhart (McClelland & Rumelhart, 1986; Rumelhart & McClel-
land, 1986). These books proposed a network model of mental functioning called
connectionism.

%% Representing Concepts in Networks: The Connectionist Approach

McClelland and Rumelhart proposed that concepts are represented in networks that
contain nodes and links like semantic networks but that operate very differently from
semantic networks. The idea of connectionist networks was partially inspired by the ner-

Knowledge




vous system, in which neurons are connected to form neural networks (see Chapter 2).
The basic characteristics of the connectionist networks, proposed by McClelland and

Rumelhart, are: s
Pattern of Animal
activation
represents
“canary”

e Connectionist networks consist of units, which are connected to form net-
works (McClelland & Rogers, 2003). McClelland describes these units as

“neuron-like units” because they share properties with neurons. Like neu-
rons, some units can be activated by stimuli from the environment, and
some can be excited or inhibited by other units. Units are also connected
with each other in circuits that resemble simple neural circuits (see Chap-
ter 2). There are three types of units: input units, which are activated by
stimulation from the environment; hidden units, which receive signals
from the input units; and output units, which receive signals from hidden
units (Figure 8.22).

o Knowledge is represented in connectionist networks by the distributed ac-
tivity of many units (McClelland et al,, 1995). Figure 8.23a shows how the
concept canary might be represented by the pattern of activation in hid-
den and output units. What this means is that when a person thinks about
what a canary is, the person’s knowledge about the properties of canaries is
represented in their mind by the pattern of activation in many units. Note
that this is different from the situation in semantic networks, in which
this knowledge about canary is represented by activity in individual nodes
(Figure 8.23b).

e Because the processing in these networks, as in the nervous system, occurs
in many parallel lines at the same time, and because the representation of
concepts in these networks is distributed across many units, the connec-

MW Figure 8.22 A connection- Output units
ist network showing input units,
hidden units, and output units.
Incoming stimuli activate the
input units, and signals travel
through network, activating the
hidden and output units. Note
that this is an extremely simplified
version of a connectionist net-
work. Networks used in research
on connectionism contain many
more units and more-complex
connections between units.

Hidden units

Input units

Chapter 8

Hidden units Bird

. Canary Robin

. Activation of this node
Input units represents “canary”

Canary

{a) Connectionist network {b} Semantic network

B Figure 8.23 (a) How information is represented in a connectionist network by the distributed pat-
tern of activity in a number of units. Activation is indicated by the size of the dots inside the units, with
large dots indicating more activation. In this example, canary is represented by the pattern of activation
of hidden and output units. (b) In a semantic network like the one in Figure 8.13c, canary is represented
by activation of the canary node.

tionist approach is also called the parallel distributed processing (PDP)
approach.

e Processing in connectionist networks is achieved by weights at each con-
nection. Weights, which can be positive (analogous to excitation in neural
circuits) or negative (analogous to inhibition), determine how strongly an
incoming signal will activate the next unit.

How does a pattern of activity in the hidden or output units become associated with
a particular stimulus or concept? A number of different mechanisms have been pro-
posed to explain how this occurs. We are going to focus on a mechanism called super-
vised learning, in which the network learns by a process that is analogous to the way
a child gains knowledge about the world by making mistakes and being corrected. For
example, a child learning language might point to a car and say aumobile. In response to
this, the parent might provide the correct pronunciation—auto-mobile. The child usu-
ally continues to make mistakes, and may also mistakenly call a truck an aumobile. But
eventually, with practice and continued guidance, the child learns how to say automobile
and not to call trucks automobiles.

To see how a similar process occurs in a connectionist network, let’s consider what
happens when we present the input canary to the network in Figure 8.24. As you read
this example, keep in mind that what we are describing is the response of a computer
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\/ to canary

(c) Network has learned “canary”

M Figure 8.24 Learning in a connectionist network. See text for details.
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that has been programmed to simulate a connectionist network, with its input, hidden,
and output units.

To start the process, the experimenter specifies a concept, such as canary. Present-
ing canary excites the input units for canary and causes activation to flow through the
network through the hidden units and then to the output units. Before any learning
has occurred, the weights in the network are random, so the pattern of activity in the
output units does not correspond to the correct pattern for canary. The correct pattern,
which has been programmed into the computer by the experimenter, is indicated above
the output units in Figure 8.24a. Just as a child uses the parents’ correct pronunciation
as a model for his or her next attempt at saying a word, the network uses the correct pat-
tern as a guide for its next attempt at producing the pattern for canary.

The network uses this pattern to calculate an error signal, which is the difference
between the actual activity of each output unit and the correct activity. The error signal
for our example, which is indicated by the numbers above the output units in Figure
8.24b, is —5, -3, +5 and +2. This error signal provides information that the network
can use to learn how to create the correct output pattern for canary. This learning oc-
curs through a process called back propagation, in which the error signal is transmit-
ted backward through the circuit. This back propagation of the error signal is symbol-
ized by the dashed arrows in Figure 8.24b.

Information provided by the back propagated error signal indicates how the net-
work’s weights need to be adjusted so that the output signal will match the correct sig-
nal. From the error signal in our example, we can see that the strength of the inputs to
the units on the left need to be decreased, and the strength of the inputs to two units on
the right need to be increased. This is achieved by changing the weights of the connec-
tions between the units.

After the weights are changed, the input canary results in a new output pattern.
This new pattern is closer to the correct pattern, but doesn’t match perfectly. The pro-
cess then repeats, with a new error signal being sent back through the network, and new
weights being created, to bring the output pattern even closer to the correct pattern.
Eventually, when the input canary results in an error signal of zero, the output is cor-
rect, and the learning process is completed (Figure 8.24¢).

Although this process seems straightforward, with the network using the error sig-
nal on each trial to modify the weights and bring the output signal closer to the cor-
rect pattern, there is one complication: The network also needs to be able to respond
correctly not only to canary, but to robin and oak tree and many other concepts. Thus,
during the learning process, the networks’ weights must be adjusted so it generates
the correct pattern not only for canary, but also for rebin and oak tree and other concepts
as well.

One way to deal with this problem is to train the network on a large number of
words or concepts at once, first presenting canary, then robin, then oak tree, and so on.
Remember that the correct pattern will be different for each concept, with each one gen-
erating a different error signal. Because the network has to respond correctly to many
different concepts, it is important to design the network’s learning process so changing
the weights to get a better response to cenary doesn’t result in a worse response to osk
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tree. This is achieved by changing the weights very slowly on each trial, so changing the
weights in response to one concept causes little disruption of the weights for the other
concepts that are being learned at the same time. Eventually, after thousands of trials,
the weights in the network become adjusted so the network generates the correct output
pattern for many different concepts.

Figure 8.25 shows how eight hidden units in a complex connectionist network re-
spond during a learning process in which the network is presented with a number of
different concepts, one after another (McClelland & Rogers, 2003). Each bar represents
the activation in each of eight hidden units in response to different inputs. At the begin-
ning of the process, activity is about the same in each unit (Learning trials = 0). But
as learning progresses, with each concept being presented one after another and the
weights being changed just slightly after each trial, the patterns become adjusted, so by
Trial 250 the patterns for salmon and canary begin to look different, and by Trial 2,500 it
is easy to tell the difference between the patterns for salmon and canary or between canary
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M Figure 8.25 Patterns of responding in eight hidden units during learning in a connectionist net-
work. See text for details. (Adapted from McClelland & Rogers, 2003.)
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and daisy. Also note that the two flowers, rose and daisy, have similar but slighely differ-
ent patterns.

There are two important things to remember about the connectionist approach:
(1) It proposes a slow learning process that eventually creates a network capable of han-
dling a wide range of inputs, and (2) information about each input is contained in the
distributed pattern of activity across a number of units. Thus, just as the nervous system
represents different faces by different patterns of activity in neurons (see Figure 2.13b),
the connectionist network represents different concepts by different patterns of activity
in its units. Some other properties of connectionist networks are as follows:

o The system is not totally disrupted by damage. Because information in the net-
work is distributed across many units, damage to the system does not com-
pletely disrupt its operation. This property, in which disruption of perfor-
mance occurs only gradually as parts of the system are damaged, is called
graceful degradation and is similar to what often happens in actual cases
of brain damage. -

®  Learning can be generalized. Because similar concepts have similar patterns,
training a system to recognize the properties of one concept (such as au-
tomobile) also provides information about other, related concepts (such as
truck and vebicle). This is similar to the way we actually learn about concepts
because learning about automobiles enables us to predict properties of dif-
ferent types of automobiles we've never seen. This ability to generalize is
the basis of intelligent behavior and the constructive nature of memory (see
McClelland et al., 1995).

o Successful computer models have been develosped. Computer models based on
connectionist networks have been created that respond to being damaged
in ways similar to the response that occurs in actual cases of brain damage
in humans. Some researchers have suggested that studying the way net-
works respond to damage may suggest strategies for rehabilitation of hu-
man patients (Farah et al., 1993; Hinton & Shallice, 1991; Olson & Hum-
phreys, 1997). In addition, connectionist networks have been developed
that simulate normal cognitive functioning for processes such as language
processing, memory, and cognitive development (Rogers & McClelland,
2004; Seidenberg & Zevin, 2006).

Although connectionist networks have a number of features that enable them to re-
produce many aspects of concept formation, opinion regarding connectionist networks
is divided. Some researchers believe that this approach holds great promise and are es-
pecially attracted to working on a system that shares some properties with the nervous
system. Other researchers think that there are limits to what connectionist networks
can explain, and feel that even if these networks may explain some aspects of how we
store knowledge, the best way to explain how knowledge is represented in the mind is to
combine connectionism with some of the other approaches to semantic memory that we
discussed at the beginning of the chapter.

Knowledge




About the Author E. Bruct GOLDSTEIN

E. Bruce Goldstein is a member of the cognitive psychology program in - University of Pittsburgh
the Department of Psychology at the University of Pittsburgh and is i University of Arizona
Adjunct Professor of Psychology at the University of Arizona. He has :

received the Chancellor’s Distinguished Teaching Award for his class-

room teaching and textbook writing. He received his PhD in experi-

mental psychology from Brown University and was a post-doctoral

fellow in the Biology Department at Harvard University before join- C O ‘ N I T I V E

ing the faculty at the University of Pittsburgh. Bruce has published
papers on retinal and cortical physiology, visual attention, and the '

perception of pictures. He is the author of Sensation & Perception (7th P S Y C H O L O G Y
edition, Wadsworth, 2007) and the editor of the Blackwell Handbook of
Perception (Blackwell, 2001) and the forthcoming two-volume Encyclo- Connecting Mind, Research, and Everyday Experience
pedia of Perception (Sage). He teaches undergraduate courses in cogni-

tive psychology and sensation and perception and a graduate course in
the teaching of psychology.

SECOND EDITION

THOMSON

WADSWORTH

Australia # Brazil » Canada » Mexico » Singapore * Spain
United Kingdom » United States



